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This paper shows that the Chebyshev weight w(x)=(1&x2)&1�2 is the only
weight having the property (up to a linear transformation): For each fixed n, the
solutions of the extremal problem �1

&1 |>n
k&1 (x&xk)|m w(x) |>n&1

k=1 (x& yk)| p

(1&x2) p�2 w(x) dx=minp=xn+ } } } , Q=xn&1+ } } } �1
&1 |P(x)| m |Q(x)| p (1&x2) p�2 w(x) dx

are the same for any m, p�1. � 1999 Academic Press

Key Words: Chebyshev weight; Chebyshev polynomials; Gaussian quadrature
formulas.

1. INTRODUCTION AND MAIN RESULTS

Let w be a weight (function) supported in [&1, 1]. Let m, p, q�0 and
m+ p>0. Denote by Pn* the set of monic polynomials of exact degree n.
This paper will characterize conditions such that the polynomials |n # Pn*
and 0n&1 # P*n&1 are the solutions of the extremal problem

|
1

&1
||n(x)|m |0n&1(x)| p (1&x2)q w(x) dx

= min
P # Pn*, Q # P*n&1

|
1

&1
|P(x)|m |Q(x)| p (1&x2)q w(x) dx (1.1)

for different values of m, p, and q.
As usual, Tn(x) and Un(x) stand for the n th Chebyshev polynomials of

the first kind and the second kind, respectively. Throughout this paper
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assume that d>0 and r�0 are fixed numbers. The first main result of this
paper is the following.

Theorem 1. Let w(x)=(1&x2)&1�2 and p�1. If for N # N

p&2q=0, (1.2)

|N(x)=21&NTN(x), (1.3)

0N&1(x)=21&NUN&1(x), (1.4)

then (1.1) holds for n=N and for any m�1.
Conversely, if (1.1) holds for n=2 and n=N and for every m=dM+

r+1, M # N0 , where N0 :=N _ [0], then (1.2)�(1.4) are valid.

Moreover, we will prove that the weight w(x)=(1&x2)&1�2 is the
only weight having this property (up to a linear transformation). More
precisely, we have the second main result of this paper as follows.

Theorem 2. Let w>0 a.e. in [&1, 1] be normalized by �1
&1 w(x) dx=?.

Let pj , qj�0 ( j=0, 1, ...) satisfy

p0&2q0=0 (1.5)

and

lim
j � �

pj=�. (1.6)

If for each n # N (1.1) holds for every pair ( p, q)=( pj , qj) and for every
m=dM+r+1, M # N0 , then

w(x)=(1&x2)&1�2 a.e., (1.7)

pj&2qj=0, j=1, 2, ..., (1.8)

|n(x)=21&nTn(x), n=1, 2, ..., (1.9)

0n&1(x)=21&nUn&1(x), n=1, 2, ... . (1.10)

Remark. A special case when p=q=0 can be found in [7] given by
the author. If (1.1) holds then (1.1) remains true provided q and w(x)
replaced by q&s(s�q) and (1&x2)s w(x), respectively; so we need the
restriction (1.5) to guarantee the unicity of the weight.

According to Theorem 1 above and Theorem 4 in [3] for m and p being
even the Gaussian quadrature formula
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|
1

&1
f (x) (1&x2)&1�2 dx= :

n

k=1

:
m&2

i=0

Cik f (i)(xkn)

+ :
n&1

k=1

:
p&2

i=0

Dik f (i))( ykn)

+ :
k=0, n

:
( p&2)�2

i=0

D ik f (i)( ykn) (1.11)

holds for every polynomial f of degree at most (m+ p) n& p&1, where

xkn=cos
(2k&1) ?

2n
, k=1, 2, ..., n, (1.12)

ykn=cos
k?
n

, k=0, 1, ..., n (1.13)

(see [6]).
In Section 2 some auxiliary lemmas are provided and in Section 3 the

proofs of the theorems are given.

2. AUXILIARY LEMMAS

The following lemma plays a crucial role in this paper.

Lemma 1. Let g # C[&1, 1] be strictly monotone on [a, b]
(&1�a<b�1) and satisfy

min[ | g(a)|, | g(b)|]=0, max[ | g(a)|, | g(b)|]=&g& := max
&1�x�1

| g(x)|.

(2.1)

Let w(x)>0 a.e. in [a, b]. Then the following statements are equivalent each
to other.

(a) The relation

|
1

&1
[sgn g(x)] | g(x)|mw(x) dx=0 (2.2)

holds for every m=dM+r, M # N0 ;
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(b) The relation (2.2) holds for any m�0;

(c) The formula

|
| g(x)| �c

[sgn g(x)] w(x) dx=0 (2.3)

holds for any c�0;

(d) The formula

|
| g(x)|�c

[sgn g(x)] | g(x)|m w(x) dx=0 (2.4)

holds for any c, m�0.
Moreover, one of Statements (a)�(d) implies

max
&1�x�1

g(x)+ min
&1�x�1

g(x)=0. (2.5)

Proof. (a) O (c). Let c be an arbitrary number satisfying 0<c<&g&
and choose $ so that 0<$<c. Put for x # [a, b]

0, if | g(x)|�c&$,

f$(x)={sgn g(x), if | g(x)|�c,

linear, if c&$�| g(x)|�c

and for x # [&1, 1]"[a, b]

f$(x)=[sgn g(x)] | f$( y)|, if | g(x)|=| g( y)|, y # [a, b].

Clearly, f$ # C[&1, 1]. Let us consider the related function on [a, b]

F$(x)={
0, if | g(x)|�c&$,

| f$(x)|
| g(x)| r , if | g(x)|>c&$,

which is continuous on [a, b]. The span of the set of functions
[ | g|dM: M # N0] forms an algebra, that is, a product of generalized polyno-
mials � aM | g|dM is another generalized polynomial [4, p. 190]. Since this
span seperates points in [a, b] (i.e., there is a function, say, | g|d such that
| g(x)|d{| g( y)| d for x{ y), by Stone Theorem [4, p. 191] this span is
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dense in the space C[a, b]. So for a given number =>0 there is a
generalized polynomial � aM | g(x)|dM such that

}F$(x)&: aM | g(x)| dM }�=, x # [a, b].

Hence for P=(x)=[sgn g(x)] � aM | g(x)|dM+r we have

| f$(x)&P=(x)|�= &g&r, x # [a, b].

By the definition of f$ , we even have

& f$&P=&�= &g&r. (2.6)

It follows from Statement (a) that

|
1

&1
P=(x) w(x) dx=0,

which, coupled with (2.6), yields

} |
1

&1
f$(x) w(x) dx }�=? &g&r.

Noting that f$ is independent of = and = is arbitrary, we have

|
1

&1
f$(x) w(x) dx=0.

Furthermore, as $ � � we get (2.3). It is easy to see that (2.3) remains true
for c=0 and c=&g&.

(c) O (b). Let m>0 and 0�c<C. Clearly, by (2.3)

|
c�| g(x)|<C

[sgn g(x)] | g(x)|m w(x) dx

=|
| g(x)|�c

[sgn g(x)] | g(x)| m w(x) dx

&|
| g(x)|�C

[sgn g(x)] | g(x)|m w(x) dx=0.
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Hence

} |c�| g(x)|<C
[sgn g(x)] | g(x)| m w(x) dx }

= } |c�| g(x)| <C
[sgn g(x)][ | g(x)| m&cm] w(x) dx

+cm |
c�| g(x)|<C

[sgn g(x)] w(x) dx }
= } |c�| g(x)| <C

[sgn g(x)[ | g(x)| m&cm] w(x) dx }
�(Cm&cm) |

c�| g(x)|<C
w(x) dx.

Then for n # N

} |
1

&1
[sgn g(x)] | g(x)| m w(x) dx }
= } :

n

k=0
|

k &g&�n�| g(x)| <(k+1) &g&�n
[sgn g(x)] | g(x)| m w(x) dx }

�
&g&m

nm :
n

k=0

|(k+1)m&km| |
k &g&�n�| g(x)| <(k+1) &g&�n

w(x) dx

�
(m+1) 2m &g&m

nmin[1, m]
:
n

k=0
|

k &g&�n�| g(x)|<(k+1) &g&�n
w(x) dx

=
(m+1) 2m &g&m

nmin[1, m] |
1

&1
w(x) dx.

Here the last inequality follows using the mean-value theorem for differen-
tiation from the inequality

(k+1)m&km�{(n+1)m&nm�m(n+1)m&1,
1,

m�1,
m<1,

(0�k�n).

As n � � we get (2.2).

(b) O (d). If we replace m by M+m and consider | g|m w as a weight,
then applying the implication (a) O (c) one can get Statement (d).

(d) O (a). (2.4) with c=0 becomes (2.2).

188 YING GUANG SHI



To prove (2.5) we note that if (2.5) does not hold then putting

c=min[ max
&1�x�1

g(x), & min
&1�x�1

g(x)]

it would lead to a contradiction to (2.3)

} || g(x)|�c
[sgn g(x)] w(x) dx }� |

| g(x)|�c, x # [a, b]
w(x) dx>0. K

Now we state an important result given by Bojanov [2, Theorem 1], in
which the part of characterization of the solution is not formulated
explicitly, but indeed is established by the system of points (3) with (5) in
its proof (i.e., (2.8) below).

Lemma 2. Let w be a weight on [a, b], continuous and positive in (a, b),
and pk�1, k=1, 2, ..., M, arbitrary fixed real numbers. Then there exists a
unique system of points x1� } } } �xM for which

|
b

a
`
M

k=1

|x&xk | pk w(x) dx= min
t1� } } } �tM

|
b

a
`
M

k=1

|x&tk | pk w(x) dx. (2.7)

Moreover b>x1> } } } >xM>a and (2.7) is valid if and only if

|
b

a
`
M

k=1

|x&xk | pk&1 _sgn `
M

k=1

(x&xk)& Q(x) w(x) dx=0 (2.8)

holds for every polynomial Q of degree at most M&1.

Lemma 3. Let w>0 a.e. in [&1, 1]. Let u # C[&1, 1] and g(x)=
>n

k=1 (x&xk) u(x) satisfy the assumptions of Lemma 1. Then the following
statements are equivalent:

(a) The relation

|
1

&1
| g(x)|m w(x) dx= min

P # P*n
|

1

&1
|P(x) u(x)|m w(x) dx (2.9)

holds for every m=dM+r+1, M # N0 ;

(b) The relation (2.9) holds for any m�1;
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(c) The formula

|
| g(x)| �c

| g(x)|m

x&xk
w(x) dx=0, k=1, 2, ..., n, (2.10)

holds for any m�1 and any c�0.

Proof. (a) � (b). By the characterization theorem of Lm approximation
the relation (2.9) means

|
1

&1
[sgn g(x)] | g(x)|m&1 g(x)

x&xk
w(x) dx=0, k=1, 2, ..., n,

or equivalently

|
1

&1 _sgn
| g(x)|
x&xk& } g(x) sgn

| g(x)|
x&xk }m&1 } g(x)

x&xk } w(x) dx=0,

k=1, 2, ..., n. (2.11)

By Lemma 1 the formula (2.11) holds for every m=dM+r+1, M # N0 , if
and only if (2.11) holds for any m�1; that is, Statement (b) is true.

(b) � (c). Again by Lemma 1 (2.11) holds for any m�1 if and only
if (2.10) holds for any m�1 and any c�0. K

The following result is due to Po� lya [5].

Lemma 4. Let w and u be weights supported in [&1, 1] and let |n # Pn*.
If

|
1

&1
||n(x) u(x)| pj w(x) dx= min

P # P*n
|

1

&1
|P(x) u(x)| pj w(x) dx (2.12)

holds for every pj and (1.6) is true, then

&|nu&= min
P # P*n

&Pu&. (2.13)

Lemma 5. Let w>0 a.e. in [&1, 1] and u=1. If (2.9) with n=1 holds
for every m=dM+r+1, M # N0 , then g(x)=x and

w(&x)=w(x) a.e. (2.14)

Furthermore, if, under the assumption (2.14), (2.9) with n=2 holds for every
m=dM+r+1, M # N0 , then g(x)=x2& 1

2 and

(1&x2)1�2 w(x)=|x| w((1&x2)1�2) a.e. (2.15)
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Proof. By Lemma 4 we have g(x)=x. By using Lemma 1 (2.3) implies

|
&c

&1
w(x) dx=|

1

c
w(x) dx.

Differentiating this relation with respect to c gives (2.14). To prove the
second part of the lemma we use Lemma 4 to get g(x)=x2& 1

2 . Again by
(2.3) and (2.14) we obtain

|
(1�2&c)1�2

0
w(x) dx=|

1

(1�2+c)1�2
w(x) dx.

Differentiating this relation with respect to c gives

w (( 1
2&c)1�2)( 1

2&c)&1�2=w(( 1
2+c)1�2)( 1

2+c)&1�2.

By making the change of the variable ( 1
2&c)1�2=x we get (2.15). K

3. PROOFS OF THEOREMS

3.1. Proof of Theorem 1

Clearly, the problem (1.1) is a particular case of the problem (2.7) when
M=2n&1, p1= } } } =pn=m, and pn+1= } } } = p2n&1= p. According to
Lemma 2 the extremal polynomial in problem (1.1) exists and is unique.
Meanwhile by Lemma 2 in order to prove (1.1) with n=N and (1.2)�(1.4)
it is enough to show that

|
1

&1
Q(x) [sgn TN(x) UN&1(x)] |TN(x)|m&1

_|UN&1(x)| p&1 (1&x2) ( p&1)�2 dx=0 (3.1)

holds for every polynomial Q of degree at most 2N&2. Since TN(x)
UN&1(x)=U2N&1(x)�2, it suffices to show that

|
1

&1
Uk&1(x)[sgn U2N&1(x)] |TN(x)|m&1

_|UN&1(x)| p&1 (1&x2)( p&1)�2 dx=0, k=1, 2, ..., 2N&1.
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By making the change of variable x=cos t and integrating over the
interval twice, the above relations become

|
?

&?
sin kt[sgn sin 2Nt] |cos Nt|m&1 |sin Nt| p&1 dt=0,

k=1, 2, ..., 2N&1.

Since sin kt is a linear combination of the functions e\ikt (i=- &1), it will
be enough to establish

I :=|
?

&?
eikt[sgn sin 2Nt] |cos Nt|m&1 |sin Nt| p&1 dt=0

k=\1, \2, ..., \(2N&1).

Remembering the periodicity of the functions, by making the change of
variable t=%+?�N we see

I=|
?

&?
eik(%+?�N)[sgn sin(2N%+2?)] |cos(N%+?)| m&1

_|sin(N%+?)| p&1 d%=e ik?�NI.

Clearly, eikr�N{1, which means I=0.
To prove the second part of the theorem by Lemma 4 we get |2=

2&1T2(x)=x2& 1
2 and (1.3). Then (1.1) with n=2 yields

|
1

&1
|x2& 1

2 |m |01(x)| p (1&x2)q&1�2 dx

= min
Q # P*1

|
1

&1
|x2& 1

2 |m |Q(x)| p (1&x2)q&1�2 dx.

It is easy to see that 01(x)=x and (1.1) gives

|
1

&1
|x2& 1

2 |m |x| p (1&x2)q&1�2 dx= min
P # P*2

|
1

&1
|P(x)| m |x| p (1&x2)q&1�2 dx,

which holds for every m=dM+r+1, M # N0 . By (2.15) we have for the
weight w(x)=|x| p (1&x2)q&1�2

(1&x2)1�2 |x| p (1&x2)q&1�2=|x| (1&x2) p�2 |x| 2q&1.
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Hence

(1&x2) (2q& p)�2=|x| 2q& p,

which implies (1.2).
By making the change of variable x=cos t it follows from (1.1) with

n=N

|
?

0
|cos Nt|m |0N&1(cos t)| p (sin t)2q dt

= min
Q # P*N&1

|
?

0
|cos Nt|m |Q(cos t)| p (sin t)2q dt. (3.2)

By using (1.2) and the identity

f (t)=Q(cos t) sin t= :
N

k=1

ak sin kt, aN {0,

(3.2) becomes

|
?

0
|cos Nt|m |0N&1(cos t) sin t| p dt= min

Q # P*N&1
|

?

0
|cos Nt| m | f (t)| p dt.

By the same argument as in [1, Chap. 1, Sec. 10] we can conclude
0N&1(cos t) sin t=aN sin Nt, which is equivalent to (1.4). K

3.2. Proof of Theorem 2

Again by Lemma 4 we get (1.9).
(2.14) follows from (1.1) and (1.9) with n=1 by Lemma 5. Further, it

follows from (1.1) and (1.9) with n=2 by (2.14) that 01(x)=x. Thus by
(2.15) for the weight |x| p(1&x2)qw(x)

(1&x2)1�2 |x| p (1&x2)q w(x)=|x| (1&x2) p�2 |x| 2q w((1&x2)1�2) a.e.

That is,

(1&x2) (2q& p+1)�2 w(x)=|x| 2q& p+1 w((1&x2)1�2) a.e.,

which holds for every pair ( p, q)=( pj , qj). This by (1.5) gives (1.8) and
hence (1.1) becomes
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|
1

&1
|Tn(x)|m |(1&x2)1�2 0n&1(x)| p (1&x2)&1�2w(x) dx

= min
Q # P*n&1

|
1

&1
|Tn(x)|m |(1&x2)1�2 Q(x)| p (1&x2)&1�2 w(x) dx,

which holds for every p= pj . By (1.6) we apply Lemma 4 to obtain

&(1&x2)1�2 0n&1(x)&= min
Q # P*n&1

&(1&x2)1�2 Q(x)&,

which gives (1.10).
To prove (1.7) by using (1.9) and (1.10), and applying Lemma 3 we have

|
|Tn(x)| �e

|Tn(x)| m

x&xk
|(1&x2)1�2 Un&1(x)| p w(x) dx=0, k=1, 2, ..., n,

(3.3)

here xk are given by (1.12). By making the change of variable x=cos t we
get

|
|cos nt| �c

|cos nt| m

cos t&cos tk
|sin nt| p sin t w(cos t) dt=0, k=1, 2, ..., n,

where tk=(2k&1) ?�(2n), k=1, 2, ..., n. That is,

|
t1&{

0
f (t) dt+ :

[(n&1)�2]

k=1
|

t2k+1&{

t2k+{
f (t) dt

& :
[n�2]

k=1
|

t2k&{

t2k&1+{
f (t) dt+(&1)n |

?

tn+{
f (t) dt=0,

where 0�{�?�(2n) and f (t)=(|cos nt|m�(cos t&cos tk)) |sin nt| p sin t w
(cos t). Differentiating this equation with respect to { yields

& f (t1&{)& :
[(n&1)�2]

k=1

[ f (t2k+1&{)+ f (t2k+{)]

+ :
[n�2]

k=1

[ f (t2k&{)+ f (t2k&1+{)]&(&1)n f (tn+{)=0.
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Since |sin nt| takes the same values at the points t=t2k&1\{, t2k\{, we
obtain

& g(t1&{)& :
[(n&1)�2]

k=1

[ g(t2k+1&{)+ g(t2k+{)]

+ :
[n�2]

k=1

[ g(t2k&{)+ g(t2k&1+{)]&(&1)n g(tn+{)=0,

where g(t)=( |cos nt|m�(cos t&cos tk)) sin t w(cos t). This means

|
|cos nt| �c

g(t) dt=0.

By making the change of variable cos t=x we get

|
|Tn(x)|�c

|Tn(x)|m

x&xk
w(x) dx=0, k=1, 2, ..., n,

which holds for any m�1 and any c�0. By Lemma 3 we have

|
1

&1
|21&nTn(x)| 2 w(x) dx= min

P # P*n
|

1

&1
|P(x)|2 w(x) dx

holds for every n # N. Then we must have (1.7). K
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